ISSN 0323-4479 - Z. phys. Chemie - Leipzig - 271 (1990) 3 - S. 565—574

Sektion Physik der Wilhelm-Pieck-Universitit Rostock

Thermodynamic Limitations for Homogeneous Nucleation
in Pores

By J. Schmelzer and F. Schweitzer
With 5 Figures and 1 Table

(Received 19th August 1988)

Abstract

The boundaries for phase transformations in capillaries or pores deviate from the macroscopic ones. This
effect is usually contributed to the interactions with the walls (capillary condensation).

In the present study it is shown that the depletion of the medium due to the phase transformation may
significantly influence the process of condensation also in the absence of interactions with the walls. In
particular, the depletion results in the existence of a critical system volume V.. While for V > V.. a transition
may proceed by homogeneous nucleation, this is excluded for V< V..

The dependence of the critical volume V, on temperature is discussed analytically and numerically for water
both for a constant initial density or a constant initial supersaturation and isothermal and adiabatic constraints,
respectively. Conclusions, concerning the kinetics of phase transitions in pores, are verified by calculations of
the mean first passage time for the formation of a supercritical drop in dependence on the size of the pore.

1. Introduction

The analysis of the properties of small clusters, of matter in small cavities is an intensively
developing area of research, both from experimental and theoretical points of view (see, €.g.
[1—6]). Hereby it is found, that the behaviour of matter may change significantly in
dependence on the size of the object of interest, the size of the capillary or pore, where the
process takes place.

A problem of particular interest is the investigation of phase transformations in small
cavities, realized, e.g., in zeolites [5] and porous glasses [7—9]. The degree, to which extent
the phase transformation proceeds for-a given size distribution of the pores in dependence on
the chosen boundary conditions, influences significantly the properties of the material. Thus,
the investigation of the influence of the system size on the course of the phase transition is of
immediate technological relevance.

As a part of such investigations here the process of condensation of a supersaturated vapour
in pores is analyzed from a thermodynamic point of view. The object of the analysis consists in
the following problem.
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Asithas been mentioned already in preceding papers [10—12] for a given temperature Tand a
given initial supersaturation y (or initial molar density p) a lower critical volume V/, of the pore
exists. While for V > V, a phase transition may proceed by homogeneous nucleation, this is
excluded for V < V.. The actual value of V,, depends hereby on T and y (or p), thus resulting in a
functional dependence V. =V (T,y) or V.= V.(T, p), respectively.

The estimation and general discussion of this dependence for isothermal isochoric constraints
and one-component systems is one main aim of the present paper (chapters 2—3). However,
since in a number of practical situations the process of condensation proceeds rapidly, compared
with processes of heat conduction, instead of isothermal adiabatic conditions may be more
appropriate. Therefore, in chapter 4 variations of the critical volume V, are analyzed, which are
due to the switch from isothermal to adiabatic constraints.

2. Thermodynamic Analysis. General Aspects

We consider a one-component closed isochoric system first at a constant temperature T. For
the chosen constraints the Helmholtz free energy is the appropriate thermodynamic potential and
thermodynamic investigations on processes of the phase transformation have to be based on
calculations of variations of F due to the formation of clusters of the new phase.

Assuming the parameters of the initial gas phase are chosen in such a way that a transition to the
liquid may proceed, the variation of the free energy A F due to the formation of one drop with the
radius r, is given by [10a, 11, 12]

AF = (pg—p")Vo+ng (W —ug) + 0A + V(p — pp) + n(ug — 1 2.1

p is the pressure, 7 is the mole number, V the volume, y the chemical potential, ¢ the surface
tension and A the surface area of the drop. The subscripts «(f3) specify the parameters of the
cluster (vapour), parameters without a subscript refer, in general, to the homogeneous
metastable initial state. " and p’ are the values for p and p for a stable coexistence of both phases
at a planar interface.
It is assumed here that the liquid can be considered as an incompressible one. This implies that
the surface tension may depend only on temperature but not on the size of the drop [12, 15].
_ For a sufficiently large size of the system the function AF = A F (ry) shows a behaviour as
presented in Fig. 1. It has two extrema for r,, = r. and ro = 7, respectively. The position and
character of the extrema (maximum or minimum) are determined by

AF ) . . 20

= —4nrgipatg — W) —pp—pH)——1=0, (2.2)
Ary Fo
azAF a“‘ﬁ roc(p(\f_p)zvof
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p being the molar density.
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AF 4
[»
Fig. 1. Dependence of the change of the free energy A F, due to the formation of a drop with the radius r,

on the size of the drop. The arrows indicate the change of the position of the extrema with a decreasing
volume of the system for a constant initial supersaturation and a constant temperature

It can be obtained from egs. (2.1) and (2.2) that the change of the position of the extrema
with an increasing size of the system, the initial supersaturation being constant is given by

= (2.4)
dv 3V 1+Z

dAF '

4 - Upp) = pP) (Mg —w) <0, 2.5)

(pp) is some intermediate value of the molar density of monomers in the vapour in the course of
formation of the drop, it is less than its initial value p and greater than the equilibrium density

!

p'.
4 Taking into account the extremum conditions and egs. (2.4), (2.5), the variation of the
position of the extrema with a decreasing volume V, the initial supersaturation and temperature
being constant, is directed as indicated in Fig. 1 by arrows. Consequently, with a decreasing
system size both extrema coincide in a point of inflexion, characterized by a common radius 5.
The corresponding value of the volume of the system we denote by V.. However, to avoid
unnecessary complications the subscript “c” is omitted, in general, if this cannot lead to
confusion.

The values of rg and V, are determined by eq. (2.2) and (1 + Z) = 0 (see, eq. (2.3)) or by

20

fi =Pa(Mﬁ—M')—(Pﬁ_P')”r— =0

¢4

(2.6)
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The indication of the existence and numerical estimations of the dependence V. = V (T, y) or
V. = V.(T, p) for special cases are given already in previous papers [10—12]. The existence of
such a size effect was verified also by computer simulations of the processes of formation of a
drop in finite systems (e.g. [16, 17]).

But since the equations (2.6) are highly nonlinear, the derivation of general conclusions
concerning this dependence has not been carried out until now. This will be done in the next
chapter.

3. Critical Values for the Size of the System in Isothermal-Isochoric Condensation

Taking into account the additional conditions y = const. (or p = const.), which correspond
to definite values of the initial supersaturation (initial density), and p = p.(7) (incompressi-
bility of the liquid) it becomes evident, that the functions f;, defined by eqs. (2.6), depend on
V,, Tand V, only. Consequently, the two equations (2.6) determine Vg, the value of the volume
of the drop corresponding to the point of inflexion of the curve AF = AF(ry),and V, as a
function of the temperature 7.

Applying the theory of implicite functions [18] we may write

oF, oF,
dV& ~ 1 aT Ve V aV T,V,
dT D |[oF, aF, G.1)
AT |v,v AViryv,
o %)
av. 1 Ve v AT v, v
aT D |[3F, 3F, (3.2)
AV v AT |y, v
8F1 an E')Fl aFZ
D= T -z . (3.3)
AVu/rv\oV /v, oV lrv \9Vy/rv

The partial derivatives with respect to T are different in dependence on whether the initial
supersaturation y or the initial density p is kept constant.
An application of the Clausius-Clapeyron equation [19]

— == 3.4)

(¢ being the molar heat of the transition, R the universal gas constant), the perfect gas law for
the vapour

/ D
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Fig. 2. The critical volume V, as a function of temperature for two different constant values of the initial
density of the vapour (2. p = 33 mol-m™?; b: 440 mol-m~3). As an example water vapour was taken. For the
values of the parameters see, e.g. [21, 22]
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Fig. 3. Absolute (full curves) and effective (dashed curves) limits for homogeneous nucleation of water vapour
as a function of temperature for different constant values of the initial supersaturation

and the relation

-
Pe=1p (3.6)
L
1%
we arrive after a neglection of, in general, small terms at
dv, 3V.rg —p'
_ «(Pa— P g , 3.7)
dT /o= const. 20T
dv, ~_3ranalea—pg (3.8)
dT y = const, zo(n—nccx)T

Results of numerical calculations, based on egs. (2.6), (3.5), (3.6), for water are shown in
Figs. 2 and 3. In agreement with the approximative analytic result (3.7) the critical volume
increases with an increasing temperature, provided that the initial density is kept constant (sce

37 Z. phys. Chemie, Bd. 271, H. 3
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Fig. 2). This increase is due rhainly to the dependence of the saturation pressure on temperature
(cf. eq. (3.4)).

Though the condition p = const. can be realized easier in experiments, a more significant
characteristic of the temperature dependence of phase transitions in finite systems is the
dependence of the critical volume V. on T for constant values of the initial supersaturation (see
Fig. 3). Again in agreement with the analytic result (3.8) V.=V (T,y = const.) is a
monotonously decreasing function of T.

For selected values of the temperature the total number N, of particles in the system and the
number of particles N& in the cluster with the volume Vg are given in the table. The values for
T = 473 K and y = 6 are left open since the number of particles becomes too small to allow for
a satisfactory macroscopic description.

Till now the analysis was confined to an estimation of the limiting values of the volume for
which the formation of a drop is excluded, in principle. In practice, however, the system will
be found in the heterogeneous state only, if the second extremum of AF (minimum) is
sufficiently deep.

From a thermodynamic point of view it is appropriate to suggest, that the transition takes
place if the minimum of AF = AF(r,) corresponds to the same or to lower values of the
thermodynamic potential compared with the metastable homogeneous initial state. Otherwise,
the system will return to and be found most of the time in the homogeneous gas phase (compare
[20]).

Starting with these arguments the effective or practical boundaries for a phase transition in a
pore can be determined by

aAF)

Ary

AF = ( =0 . (3.9
Curves, calculated based on these equations, are shown in Fig. 3 by dashed lines. They deviate
only slightly from the curves, calculated via eqgs. (2.6).

4. Extension to Other Types of Constraints

Since the formation of a drop is a stochastic process, it may take a long time until a
sufficiently large fluctuation results in the formation of a two-phase system. The duration of
this special fluctuation, leading to the formation of a drop, is, however, relatively short. Thus,
processes of heat conduction are negligible and, instead of isothermal conditions, the
assumption of an adiabatically closed system is more appropriate.

A general thermodynamic analysis of the process of cluster formation under adiabatic
conditions was given elsewhere [14, 23, 24]. For the considered case (U = const., n = const.,
V = const.) the characteristic potential is the entropy S and the process of cluster formation is
to be analyzed from a thermodynamic point of view by a calculation of S.

For the homogeneous initial state the entropy can be written as

1
Shom=§‘..(U+pV~M”) (4.1)
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while we obtain for the heterogeneous state [12, 24]
%+m%~m%+%+w%—%%
Te Tg

Uy=U,+ U, Ao =Ny + 1y .

Shet =
4.2)

U, and n; are the surface contributions to the inner energy U and the number of moles n [25].

Calculating AS = Spe; — Shom and proceeding in the same way as described for the
isothermal case, we obtain, instead of eqs. (2.6), the following expressions for the size
dependence of the critical volume V.,

, , 20
Pa(Mﬁ—M)—(PB—P)—'—r—~=0
3 (O Pe—pPPVe  CypT. TV
1- == apﬁ(] uﬁ3v T,V, =0 (4.3)

20

N

Te=T+J

0
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CLnoz + CV(” - n(x) '

C;, and Cy are the molar heat capacities of the liquid and the vapour.

It can be seen from Fig. 4 by a comparison with Figs. 2—3 that for a given value of the initial
temperature T the increase of T due to the latent heat of condensation (T, > T) results in higher
values of the critical volume V.. This conclusion is generally valid and not restricted to some
special choice of the parameters (compare [23]). In the limit ¢ — 0 egs. (4.3) are reduced to
egs. (2.6), again.

In general, a behaviour as shown in Fig. 1 (the existence of a minimum) will always be
found, if the phase transition is accompanied by a depletion of the mother phase. Thus the
discussed effect, the existence of a critical volume V., always occurs in such situations and can
be analyzed by the same method.

5. Discussion

The presented analysis shows in agreement with experimental investigations and results of
computer simulations that the boundaries for phase transformations in small volumes are
modified compared with macroscopic systems also in the case of negligible interactions with
the walls. This can be verified by calculations of the mean first passage time for a formation of
a supercritical drop in dependence on the actual value of the system size [11, 12].

Results, obtained for the isothermal case, are shown in Fig. 5. For volumes, comparable
with the critical volume V.. the average time interval t for the formation of a supercritical drop
increases significantly compared with the macroscopic value 1., and diverges a V trends to V...

It follows as a conclusion that for V = V. an additional decrease of the temperature for fixed
~ values of the density of monomers is needed to initiate condensation. Thus, in small cavities

37*
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Fig. 4. Dependence of the critical volumes for constant initial densities and constant initial supersaturations,
respectively, in adiabatically closed systems on temperature. T is here the initial temperature of the vapour
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Fig. 5. Ratio of the mean first passage times for the formation of a supercritical cluster in a finite (t) and
infinite (T.,) system as a function of the volume of the system for two different initial supersaturations and
isothermal conditions (T' = 323 K). (a:y = 6;y = 3)

phase transitions proceed for higher undercoolings compared with macroscopic systems, if in
both cases impurities or interactions with the walls may be excluded.

Besides the assumption of the absence of heterogeneouties and the neglection of possible
interactions with the walls another restriction of the outlined method of analysis exists. It is
assumed always that the heterogeneous system consists of one cluster and monomers only.
However, besides monomers and the drop also dimers, trimers and so on will be formed, in
general, resulting in finite systems in an additional depletion and, consequently, in an increase
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Table 1. Total number of particles N, in the critical volume V, and number of particles N¢ in a cluster with the
volume V¢, for different values of the initial supersaturation and isothermal conditions

T[K] y=3 y=6

N Ng N, Ng
273 1786 394 271 87
323 796 176 120 39
373 359 79 55 17
423 155 34 23 8
473 58 13 - -

of the critical volume (see also [28]). In principle, it is possible to incorporate such effects into
the thermodynamic description.

For a first qualitative understanding and a first quantitative estimation of the critical volumes
for different systems the applied method seems to be more appropriate. Quantitatively exact
studies require a microscopic approach (e.g. [26, 27]) taking into account explicitely also the
interactions with the walls.
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